Improved Method of Handwritten Digit Recognition

نویسندگان

  • Ernst Kussul
  • Tatyana Baidyk
چکیده

MNIST database serves for comparison of different methods of handwritten digit recognition. There are many data related to different classifier recognition rates among which our neural classifier had the second place [1] (recognition rate 99.21%). At present we develop improvements of neural network structure and algorithms of handwritten digit recognition. Improved classifier has recognition rate 99.37%. This result is the best from the known ones. In this paper we briefly describe the general structure of our classifier and the latest improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Extraction Method of Handwritten Digit Recognition Tested on the MNIST Database

This paper deals with an optical character recognition (OCR) system of handwritten digit, with the use of neural networks (MLP multilayer perceptron). And a method of extraction of characteristics based on the digit form, this method is tested on the MNIST handwritten isolated digit database (60000 images in learning and 10000 images in test). This work has achieved approximately 80% of success...

متن کامل

Twin Minimax Probability Machine for Handwritten Digit Recognition

Handwritten digit recognition is a task of great importance in many applications. There are different challenges faced while attempting to solve this problem. It has drawn much attention from the field of machine learning and pattern recognition. Minimax probability machine (MPM) is a novel method in machine learning and data mining. In this paper, we present an extension algorithm for MPM, whi...

متن کامل

A class-modular GLVQ ensemble with outlier learning for handwritten digit recognition

A class-modular generalized learning vector quantization (GLVQ) ensemble method with outlier learning for handwritten digit recognition is proposed. A GLVQ classifier is one of discriminative methods. Though discriminative classifiers have remarkable ability to solve character recognition problems, they are poor at outlier resistance. To overcome this problem, a GLVQ classifier trained with bot...

متن کامل

Methods for Enhancing Neural Network Handwritten Character Recognition

An efficient method for increasing the generalization capacity of neural character recognition is presented. The network uses a biologically inspired architecture for feature extraction and character classification. The numerical methods used are, however, optimized for use on massively parallel array processors. The method for training set construction, when applied to handwritten digit recogn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002